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Consider the equation

(1) ut = (au x)x + f(u), 0 < x < 1,

with homogeneous Neumann conditions

(2) u = 0 at x = 0, x = 1,x

where a E C 2[0,1] is a positive function and f E C 2R). System (1), (2)

defines a local dynamical system in H (0,1) = W 1'2 (0,1) (see Henry [8]).

Furthermore, the w-limit set of any bounded orbit is exactly one equilibrium

point; that is, a solution of the equations

(3) (aux) + f(u) = 0, 0 < x < 1

(4) u = 0 at x = 0, x = 1x

(see Matano [11], Hale and Massatt [6], Zelenyak [lS]).

The first result is the following.

Theorem 1. If a"(x) < 0 on [0,1], then every nonconstant equilibrium

solution of (1),(2) is unstable.

For a(x) = c > 0, where c is a constant, this result was proved by

Chafee [2]. Note that the conclusion in the theorem is valid for every function

f. Matano [13] has given an example (1),(2) for which there are stable non-

constant equilibrium solutions. The function f can be chosen to be a cubic

with three simple zeros and the function a is > 1 on intervals [0,a], [8,1]

and < c on [y,6], a < y < 6 < 4 and e is sufficiently small. Numerical

examples indicated the same property can occur with a > 1 on [0,a] and < E on
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[B,1] with a < 8. These examples show clearly that more work is needed to

determine the optimal conditions on a for the conclusions of the theorem to

hold.

For a more general parabolic equation in several space dimensions in a

bounded domain Q and the diffusion coefficients constant, Casten and Holland

[1], Matano [121 have shown that Theorem 1 is true if Q is convex. The

authors have had no success in extending this result in a significant way with

variable diffusion coefficients. If Q is not convex and the diffusion co-

efficients are constants, nonconstant equilibrium solutions can occur (see

Matano [12], Hale and Vegas [7], Vegas [14]) for certain nonlinear functions f.

If the diffusion coefficient in (1) is constant and f is a function of u(.,t),

for example, f(u(x,t)) = g(u(x,t), Jc(x)u(x,t)dx), then stable nonequilibrium

solutions can occur (see Chafee [3]). A similar situation was considered in

several space dimensions and nonconvex domains by Keyfitz and Kuiper [9]. For

constant diffusion in (1) and f replaced by s(x)f(u), Fleming [5], (see also

Henry [8]) has considered how the existence of stable nonconstant solutions

depend on s(x). All of these papers should be reconsidered with variable

diffusion.

There is an analogue of Theorem 1 for the Dirichlet problem.

Theorem 2. Consider the equation (1) with Dirichlet boundary conditions

u = 0 at x = 0, x = 1.

If a"(x) < 0 on [0,1] and v(x) is a nonconstant equilibrium solution such

that v x 0 at two points in (0,1), then v is unstable.
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For a(x) = c > 0, this result was proved by Chafee and Infante [4],

Maginu [10].

Proof of Theorem 1. If v is a solution of (3),(4) and

= a2x f'(v)2]dx,
0

then the first eigenvalue X of the operator

Lu =-(au x) x - f (v)u

is given by

X1 = min{ '() : E HI(0,1, L01 )

E ('l'If 2 (01
-- L (0, 1) .

Furthermore, the equilibrium solution v of (1),(2) is unstable if X < 0

(see, for example, Henry [ 8]). Consequently, it is sufficient to show that

the hypotheses of the theorem imply X1 < 0 if v is not a constant and this

will be the case if we show that !'(av x).< 0 if v is not a constant. We

have

t/[a[ ) - [ 2 _ f'(v)(av x) 2]dx

00x J X JO

= af2(v)dx + f f(v)a(avx)xdx + ff(v)a'av dx
0O 0 0

= -l(av X) a' (av x)dX
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To compute the last expression, we integrate by parts to obtain

f(avxa'(avxaX = av a"av dx - fav a(av dx0 0 x 0x

and, thus,

fO(av)xa'(avx)dx _ a(av dx.

Therefore,

(5) s!Vaval (x  ) 2 dx 0

since we have assumed a" < .

If s(av ) < 0, then X < 0 and the solution v is unstable. Thus,
xI

suppose X1 1 0. From (5), this implies j(avx ) = 0 which implies A, = 0.

Since the first eigenvalue of L is simple, there is a satisfying

L = 0, 0 = 0 at x = 0, x 1, 0 2 = 1. Also, Y'(av x) = 0 impliesL 0, x 0atx O xL1 ] L(0,1)x

there is a constant c such that av = co on [0,1]. If c j 0, then v = 0
x

at x = 0, x = 1 and a > 0 imply 0 = 0* at x = 0, x = 1. But this would

imply * = 0 on [0,1] which is a contradiction. Thus, c = 0 and av = 0,
x

vx = 0 and v = constant. This proves the theorem.

Proof of Theorem 2. Suppose v is an equilibrium solution, v = 0 at x = a,
x

x = 6, a,$ E (0,I). Then v is an equilibrium solution of the Neumann problem

on the interval [a,$]. As in the proof of Theorem 1, one shows that the first

eigenvalue A1 of the linear variational operator is negative if v is not a

constant. By the characterization of A as a minimum of the functional j!/(u),

it follows that X1  for the Dirichlet problem on [0,1] is negative. This proves

the theorem.
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